Perkalian Sinus dan Kosinus

 Sebelumnya bacalah terlebih dahulu mengenai Trigonometri untuk mempelajari rumus-rumus jumlah dan selisih dua sudut, yaitu:


cos (α + β) = cos α cos β – sin α sin β
cos (α – β) = cos α cos β + sin α sin β
sin (α + β) = sin α cos β + cos α sin β
sin (α – β) = sin α cos β – cos α sin β

Sekarang, Anda akan mempelajari perkalian sinus dan kosinus. Untuk itu, pelajari uraian berikut.

cos (α + β) = cos α cos β – sin α sin β .... (1)
cos (α – β) = cos α cos β + sin α sin β .... (2)

Dengan menjumlahkan (1) dan (2), Anda akan memperoleh

cos (α + β) + cos (α – β) = 2 cos α cos β

Jadi, perkalian cosinus dan cosinus adalah :

perkalian cosinus dan cosinus


cos (α + β) = cos α cos β – sin α sin β .... (3)
cos (α – β) = cos α cos β + sin α sin β .... (4)

Dengan mengurangkan (4) terhadap (3), diperoleh :

cos(α + β) – cos (α – β) = –2 sin α sin β

Jadi, perkalian sinus dan sinus adalah :

perkalian sinus dan sinus


sin (α + β) = sin α cos β + cos α sin β .... (5)
sin (α – β) = sin α cos β – cos α sin β .... (6)

Dengan menjumlahkan (5) dan (6), diperoleh :

sin (α + β) + sin (α – β) = 2 sin α cos β

Jadi, perkalian sinus dan cosinus adalah :

perkalian sinus dan cosinus


sin (α + β) = sin α cos β + cos α sin β .... (7)
sin (α – β) = sin α cos β – cos α sin β .... (8)

Dengan mengurangkan (8) terhadap (7), diperoleh

sin(α + β) – sin (α – β) = 2 cos α sin β

Jadi, perkalian sinus dan cosinus :

perkalian sinus dan cosinus

Contoh Soal 1

Bentuk sederhana 4 sin 36° cos 72° sin 108° adalah ....

Penyelesaian


= 4 sin 36° cos 72°sin 108° 
= 2 sin 36° [2 sin 108° cos 72°] 
= 2 sin 36° [sin(108 + 72)° + sin (108 – 72)°] 
= 2 sin 36°[0 + sin 36°] 
= 2 sin2 36° = 1 – cos 2(36°)
= 1 – cos 72°

Komentar